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SUMMARY

This paper presents a �nite di�erence technique for solving incompressible turbulent free surface �uid
�ow problems. The closure of the time-averaged Navier–Stokes equations is achieved by using the two-
equation eddy-viscosity model: the high-Reynolds k–� (standard) model, with a time scale proposed by
Durbin; and a low-Reynolds number form of the standard k–� model, similar to that proposed by Yang
and Shih. In order to achieve an accurate discretization of the non-linear terms, a second=third-order
upwinding technique is adopted. The computational method is validated by applying it to the �at plate
boundary layer problem and to impinging jet �ows. The method is then applied to a turbulent planar
jet �ow beneath and parallel to a free surface. Computations show that the high-Reynolds k–� model
yields favourable predictions both of the zero-pressure-gradient turbulent boundary layer on a �at plate
and jet impingement �ows. However, the results using the low-Reynolds number form of the k–� model
are somewhat unsatisfactory. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: averaged Navier–Stokes equations; �nite di�erence; turbulent free surface �ow; higher-
order upwind bounded scheme; two-equation k–� eddy-viscosity model

1. INTRODUCTION

Turbulent free surface �ows are of great technological interest and yet in 1987 Ferziger [1],
in a fairly substantial review on the calculation of incompressible turbulent �ows, did not
mention this challenging topic. It is interesting to note the changes that have taken place in
just 15 years. In 1996 there were no less than three review articles on turbulent free surface
�ow problems and related topics [2–4]. Other examples of numerical studies of turbulence
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at a free surface include Borue et al. [5], Pan and Banerjee [6] and Tsai [7]; all three sets
of authors employed the full time-dependent Navier–Stokes and continuity equations, that
is direct numerical simulation (DNS). One of the major di�culties is that the free surface
boundary conditions are really unknown. This is hardly surprising when one considers the
di�erent types of turbulence, as exempli�ed in the work of Brocchini and Peregrine [8] (and
the companion paper, Reference [9]). Almost all modelling, to date (e.g. References [10, 11]),
deal with linearized boundary conditions; an exception is Brocchini and Peregrine who discuss
free surface boundary conditions for strong turbulence.
How a rigid wall a�ects turbulence is relatively well understood and, at �rst sight, it might

be thought that these ideas (e.g. law of the wall approximations, etc.) might carry over to free
surfaces. However, a free surface can a�ect turbulence in two ways. First, in the absence of a
surface force (e.g. wind), the tangential stresses at the free surface should be zero; near a rigid
wall, the velocity gradient is very large which makes turbulence production and dissipation
signi�cant there. Secondly, the free surface, at least for weak turbulence, restricts the motion
in the normal direction of the �ow producing greater lateral movement, while the no-slip
boundary condition at a rigid wall makes the velocity components vanish in all directions.
There are many approaches to turbulence modelling: arguably the four main techniques

are the two-equation k–� eddy-viscosity model, Reynolds stress model, large eddy sim-
ulation (LES) and DNS. LES calculates the large-scale �ow structures of the turbulence
explicitly, while modelling the in�uence of the smaller ones. In DNS, the unaveraged time-
dependent Navier–Stokes and continuity equations for turbulent �ows are solved numerically.
The Reynolds stress model attempts to provide solutions for all components of the Reynolds
stress tensor, derived from manipulation of the instantaneous Navier–Stokes equations and
Reynolds equations. On the other hand, in the two-equation k–� turbulence model the basic
assumption is that the Reynolds stress tensor can be related to local values of averaged �uid
�ow variables by introducing a turbulent kinetic energy (k) and a turbulent (or eddy) viscos-
ity (�t). The equations must then be closed, and the choice of closure models is itself open
to debate. Clearly the advantage of DNS is its independence from any ad-hoc assumptions
and its greater �exibility in matching experimental measurements. However, both DNS and
LES are still restricted to problems with very small amplitude surface waves, not to mention
the usual di�culties associated with a high-Reynolds number �ow. Indeed, only wave heights
can really be considered that are smaller than the boundary layer thickness.
The two-equation k–� eddy-viscosity model is still the most widely used in industrial and

engineering applications, even though it fails to predict correctly a number of �ows. It was
developed, calibrated and validated for wall-bounded high-Reynolds number turbulent �ows
(see References [12, 13]) and has been traditionally used in conjunction with empirical wall
functions to patch the core region of the �ow to the wall region. However, physical phenomena
involved in a free surface �ow can be substantially di�erent and have been considered as
highly challenging test for validating turbulence models. Furthermore, universal wall functions
do not exist for complex �ows and this led many authors (in particular, Yang and Shih [14])
to develop a form of k–� turbulence model that could be integrated down to the wall.
This paper is concerned with adapting the classical front-tracking Marker-and-Cell (MAC)

approach (see e.g. Reference [15]) to a two-dimensional variant of the k–� turbulence model.
The two dimensions may be either Cartesian or axisymmetric cylindrical co-ordinates. This
adaptation is not straightforward and really depends strongly on recent work of the authors
(see e.g. Reference [16]), where upwinding using the variable-order non-oscillatory scheme
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(VONOS) [17] has been applied in addition to a number of other improvements to the original
MAC idea (see Reference [18]). In order to validate the numerical method, three �uid �ow
problems were considered, namely: channel �ow, planar jet �ow and axisymmetric jet �ow.
Calculations were carried out for both high and low Reynolds number k–� eddy-viscosity
turbulence models and the results in the case of the high-Reynolds number model displayed
good agreement with theoretically derived approximations. Finally, the numerical results of a
penetrating planar jet discharging beneath and parallel to a free surface were shown with the
ensuing turbulence and how it interacts with the free surface. The paper concludes with some
observations and closing remarks.

2. FLUID FLOW EQUATIONS

The conservation equations for two-dimensional time-dependent, viscous, isothermal incom-
pressible turbulent Newtonian �uid �ow are the time-averaged Navier–Stokes equations, mass
conservation equation, and k and � equations. In conservative form these �uid �ow equations,
omitting averaging symbols, can be written, respectively, as
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In the above equations, t is the time, u= u(r; z; t) and v= v(r; z; t) are, respectively, the com-
ponents in the r and z directions of the local time-averaged velocity vector �eld u= u(r; z; t)
of the �uid; k= k(r; z; t) is the local time-averaged turbulent kinetic energy of the �uctuating
motion, �= �(r; z; t) is the turbulence dissipation rate of k, pe =p+ 2

3(1=Re)k is the e�ective
scalar pressure �eld divided by the density, and g=(gr; gz) is the gravitational accelera-
tion. The non-dimensional parameters Re=U0L0=� and Fr=U0=

√
L0|g| denote the associated

Reynolds and Froude numbers, respectively, in which U0 is a characteristic velocity scale, L0
is a length scale, and � is the kinematic molecular viscosity coe�cient. The isotropic eddy
viscosity �t , the turbulent shear stress production P, the turbulence time scale Tt , and the
gradient dissipation E are, respectively, de�ned as

�t =C�f�kTt (6)
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where, in (8), |S|2 =D :D [10], with D= 1
2[∇u+ (∇u)T]. The model constants C�, C1�, C2�,

�k and ��, and the parameter � in (5) and (8) are used to specify the two-equation k–�
turbulence models considered in this work. When C�=0:09, C1�=1:44, C2�=1:92, �k =1:0,
��=1:3 and �=0, we are dealing with the standard high-Reynolds number form of the k–
� model [12] (denoted in this paper by H Re k–� model), with a time scale proposed by
Durbin [19] to take account of the stagnation-point anomaly. When the model constants are
chosen to be that proposed by Ho�man [20]; that is, C�=0:09, C1�=1:81, C2�=2:0, �k =2:0,
��=3:0 and �=1, we are treating a low-Reynolds number form of the k–� turbulence model
(denoted here by LRe k–� model) similar to that proposed by Yang and Shih [14]. The
damping function f� in (6) assumes the value f�=1 in the case of the H Re k–� model, and
takes the following expression in the case of the LRe k–� model:

f�=[1− exp(−a1Rezw − a3Re3zw − a5Re5zw)]
1=2 (10)

where a1; a3 and a5 are constants given by a1 = 1:5× 10−4, a3 = 5:0× 10−7, a5 = 1:0× 10−10
[14], and Rezw is the local Reynolds number de�ned as Rezw = zwRe k

1=2, zw being the nor-
mal distance from the nearest rigid-boundary to a point in the �ow. The parameter � in (1)
through (7) is used to specify the co-ordinate system, namely: when �=0, plane Cartesian
co-ordinates are considered (r is to be interpretted as x and z as y); and when �=1, cylin-
drical polar coodinates are assumed. Equations (1)–(5) have been non-dimensionalized with
the following scalings:

u∗= uU0; r∗= rL0; v∗= vU0; z∗= zL0; t∗= tL0=U0

p∗
e =peU 2

0 ; k∗= k�U0=L0; �∗= ��U 2
0 =L

2
0; �t∗= �t�; g∗i = gi|g| (11)

where variables with a star refer to their corresponding dimensional variables.
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3. INITIAL AND BOUNDARY CONDITIONS

Equations (1)–(5) are coupled non-linear partial di�erential equations and, together with the
eddy viscosity model (6), are su�cient, in principle, to solve for the �ve unknowns u, v, pe, k
and � when appropriate initial and boundary conditions are speci�ed. In this work, a staggered
grid is used where the e�ective pressure, the turbulent kinetic energy and the dissipation rate
are stored at the centre of a computational grid cell, while velocities are stored at the cell
edges. A typical cell showing the physical locations at which these dependent variables are
de�ned is illustrated in Figure 1. With this grid system, e�ective pressure boundary conditions
are not needed. The boundary conditions and initial conditions have been implemented as
follows.
The initial conditions for the mean velocities and e�ective pressure are speci�ed in the

same way as in the laminar case [18, 21]; that is, these variables are prescribed. It can be
di�cult to specify initial conditions for the turbulent variables since they must be in agreement
with the physics of the problem. Thus, for the free surface �uid �ow problems considered in
this paper, we prescribe the initial conditions for k and �, and hence �t , as functions of an
upstream turbulent intensity I [22, 23], along with the large-scale characteristic velocity U0.
The variable k is estimated by (see Reference [22])

k= k(I; U0)= IU 2
0 (12)

From dimensional reasoning, the variable � is then determined following [24]
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Figure 1. Staggered grid cell showing locations of the dependent variables.
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where lt is a characteristic length associated with large scales and is chosen as lt = �L0 [1],
with � a constant. In non-dimensional form, (12) and (13) can be written, respectively, as

k= IRe and �=
1
�
(Re−1k3)1=2 (14)

In all computations presented in this paper, the values I =8:0× 10−2 and �=1:0× 10−2 were
employed.
Five types of boundary conditions have been implemented, namely: in�ow, out�ow, symme-

try, free surface, and rigid-wall boundaries. At the in�ow, the velocities u and v are prescribed
while the values of k and � are estimated in such a way that they are consistent with the
initial conditions (14). At the out�ow, the streamwise gradient for each variable is required
to be equal to zero. At symmetry boundaries, we set

un=0;
@u �t
@n
=0;

@k
@n
=0 and

@�
@n
=0 (15)

where n and �t denote normal and tangential directions to the boundary, respectively. At a
free surface, we consider the �uid to be moving into (or out of) a passive atmosphere (zero-
pressure) and, in the absence of surface tension forces, the normal and tangential components
of the stress must be continuous across any free surface; hence on such a surface we have
(see, for example, Reference [26])

n · (� · n) = 0 (16)

m · (� · n) = 0 (17)

Here, n and m are unit normal and tangential vectors to the surface, and �= �(pe; �t ; u) is the
Cauchy stress-tensor de�ned by

�=−pe I+ Re−1(1 + �t)D (18)

where I denotes the identity tensor. Following the approach in Reference [21], Equations (16)
and (17) are discretized by accurate local �nite di�erence approximations on the free surface,
namely: from condition (16) one determines the e�ective pressure; and from (17) one obtains
the velocities at the free surface. Due to the complexity of the dynamics of the turbulence
near to the interface, the values of the turbulent variables k and � at the free surface of the
�uid are di�cult to specify. For instance, it is not known how turbulence interacts with the
surface tension and, therefore, it is di�cult to specify the distribution of k on an irregular
moving free surface. So, as a �rst approximation, we assume that the free surface is locally
�at and the movement of the �uid does not cause any discontinuities at this boundary. In
summary, the turbulent variables at the free surface are determined by imposing

@k
@n
=0 and

@�
@n
=0 (19)

The derivatives in (19) are approximated by �rst-order �nite di�erences.
The boundary conditions at a rigid-wall depend on the k–� viscosity model under consider-

ation. When the simulation is performed with the H Re k–� model, the wall function approach
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is employed. In this case, the fundamental equation for determining the �ctitious velocities
and turbulent variables near a rigid wall is the total wall shear stress (or momentum �ux) �w
given by [23] (

Re−1(1 + �t)
∣∣∣∣@û@n

∣∣∣∣
)∣∣∣∣

wall
≈ u2� = �w (20)

where û represents the mean velocity component tangential to the rigid-wall, and u� is the
friction velocity. The values of the k and � in the inertial sublayer are, respectively, prescribed
by the well known relations [23, 27]

k=Re
�w
C1=2�

and �=Re
�wu�

Kzw
(21)

where K =0:41 is the von K�arm�an constant (see, for example, Reference [28]). In the viscous
region close to the wall (viscous sublayer), we use the strategy of Sondak and Pletecher [27];
that is,

k=Re
�w
C1=2�

(
z+

zc+

)2
and �=Re−1=2

k3=2

l∗
(22)

where z+ is de�ned as z+ =Re u�zw, and l∗ represents the length scale proposed by Norris and
Reynolds [29]. Neglecting the bu�er layer of the turbulent boundary layer, the critical value
of z+ (denoted by zc+) in (22) separates the viscous sublayer from the inertial sublayer. A
detailed discussion of the initial and boundary conditions for the H Re k–� turbulence model
can be found in Ferreira [30]. When the LRe k–� model is used, the velocity at the solid
boundary is set to zero to represent the no-slip velocity boundary condition (u= 0), and the
values of the turbulent quantities k and � at the wall are speci�ed, respectively, as [31]:

kw =0 and �w =2Re−1
(
@k1=2

@n

)2
(23)

3.1. Implementation of wall functions

It is well established by now that the H Re k–� model requires to be modi�ed so that �ow
simulations near rigid boundaries can take account of the damping of velocity �uctuations and
the viscous e�ects. In general, the solution of the k–� conservation equations in the inner layer
of a turbulent boundary layer near the wall is not necessary since the �ow mechanism in such
a region can be described reasonably well by employing wall functions (for a more detailed
discussion see, for example, Reference [30]). In what follows, we describe our implementation
of the law of the wall boundary conditions.
The behavior of the mean velocity pro�les in the viscous and inertial sublayers are, respec-

tively, given by (see, for example, References [32–34])

u+ − z+ = 0 (24)

ln(Ez+)− Ku+ = 0 (25)
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where u+ = û=u� and E= exp(KB); B is an empirical constant and is usually chosen to corre-
spond to a hydrodynamically smooth wall [26]. One of the central questions in the application
of the wall functions (20)–(22) and (24)–(25) is the accurate determination of the friction
velocity, and hence the wall shear stress. This is determined from the relations (24) or (25),
depending on the local Reynolds number z+. To obtain u� from (25), Newton–Raphson is ap-
plied; a choice of the initial starting guess u�=11:60 was employed by Benim and Zimer [35].
To begin with, we need to know the critical Reynolds number z+c ; this is a measure of the
(non-dimensional) distance separating the viscous sublayer from the inertial sublayer. By ne-
glecting the transition sublayer (bu�er layer), the friction velocity is estimated in the following
manner: with the tangential velocity û known in the �rst grid cell adjacent to the wall, u� is
updated according to the value of z+ given by (24). If z+ is less than z+c , we use (24); on
the other hand, if it is not, we employ (25). The �ctitious velocities are calculated by the
central-di�erence approximation of (20) for a known wall shear stress.

4. SOLUTION TECHNIQUE

The governing equations (1) through (5) are solved with an extension of the GENSMAC
methodology for the turbulent �ow �eld (see Reference [30]). A detailed description of this
code for a laminar �ow �eld is provided by Tom�e and McKee [18] and Tom�e et al. [21].
Based on a predictor-corrector scheme, GENSMAC is an explicit �nite di�erence, �rst=second-
order accurate numerical method for the calculation of free-surface �ows as well as con�ned
�ows. By using a guessed e�ective pressure p̃e and an eddy viscosity �t , the method consists of
solving the time-averaged Navier–Stokes equations at the (k+1) time-step for an intermediate
velocity �eld ũ. The ũ velocity is related to the true velocity �eld u, at the (k+1) time-step,
by an auxiliary potential function  which is calculated from a Poisson equation, obtained by
imposing ∇ · u=0 at the (k +1) time-step. The e�ective pressure and the turbulent variables
k and � are then updated and the procedure is repeated at each time-step. In particular, when
calculating ũ in step 1 we employ an adaptive time-stepping routine (see Reference [18]).
The numerical solution procedure may be summarized as follows.
It is supposed that, at a given time t= t0, the velocity �eld u is known and suitable boundary

conditions for the velocity and turbulent variables are given. Let p̃e(r; z; t) be an arbitrary
e�ective pressure �eld that satis�es the correct pressure condition on the free surface. This
pressure �eld is constructed employing the normal-stress condition (16) at the free surface,
and is chosen arbitrarily (for instance, p̃e(r; z; t)=0) within the �uid. The updated velocity
�eld, the e�ective pressure and the turbulent variables are calculated at time t= t0 +	t by the
following steps:

1. With the eddy viscosity �t known at t= t0, compute an approximate velocity �eld
ũ(r; z; t)= [ũ(r; z; t); ṽ(r; z; t)] from an explicit �nite di�erence discretization of
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with ũ(r; z; t0)= u(r; z; t0) using the correct boundary conditions for u(r; z; t0). It can be
shown (see, for example, Reference [21]) that ũ(r; z; t) possesses the correct vorticity at
time t but does not satisfy (3), in general. By writing

u(r; z; t)= ũ(r; z; t)−∇ (r; z; t) (28)

and imposing

∇2 (r; z; t)=∇ · ũ(r; z; t) (29)

a velocity �eld is obtained in which the vorticity and mass are conserved.
2. Solve the Poisson equation (29) for potential function  . The appropriate boundary
conditions for this elliptic equation are homogeneous Dirichlet-type on the free surface
and homogeneous Neumann-type on the �xed boundaries [36]. These are treated in a
similar way as in the GENSMAC code of References [18, 21].

3. Calculate the velocity �eld u(r; z; t) from (28).
4. Compute the e�ective pressure. It can be shown (see Reference [30]) that this pressure
�eld is given by

pe(r; z; t)= p̃e(r; z; t) +  (r; z; t)=	t (30)

5. Compute the kinetic energy k from an explicit �nite di�erence approximation of (4).
6. Compute the dissipation rate � from an explicit �nite di�erence approximation of (5).
7. Update the eddy viscosity �t from (6).
8. Particle movement. The last step in the calculation involves the movement of the marker
particles to their new positions. These are virtual particles (without mass, volume, or
other properties), whose co-ordinates are stored and updated at the end of each cycle by
solving the ordinary di�erential equations

ṙ= u(r; z; t) and ż= v(r; z; t) (31)

by Euler’s method. This provides the particles with new co-ordinates, thus determing
whether or not an individual particle has moved into a new computational cell, or if it
has left the containment region through an out�ow boundary.
In order to improve e�ciency particles are only de�ned on the �uid boundary. This is
achieved by using a set of ordered lists de�ning the interior of the �uid region. Each
list stores connected information about the type of movement the particle is entitled
to make. For instance, a particle of type ‘in�ow’ cannot move, whereas a particle of
type ‘surface’ can move freely according to the computed velocity �eld. The �uid sur-
face (hence the free surface) is obtained by connecting these particles by straight lines.
A procedure for inserting=deleting particles is employed. Should the distance between
any two particles be greater than that du (usually about 0.6 of the cell length) a particle
is inserted midway between the two particles on the line joining them. On the other
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hand, if the distance between any two particles is less than dL (usually about 1
20 of the

cell length), these two particles are replaced by a single particle at the mid-point of the
line joining them. Details of the free surface treatment are given in Tome et al. [21].

9. Update the boundary conditions and go back to the �rst step.

5. DISCRETIZATION OF THE FLUID FLOW EQUATIONS

In the solution procedure described in the previous section, the di�erential equations were
discretized using a �nite di�erence formulation on a uniform staggered grid. The temporal
derivatives were discretized using the �rst-order forward di�erence (Euler’s method), while the
spatial derivatives were approximated by standard second-order central di�erences with the
exception of the convection terms (denoted here by CONV(·)), which were handled with
the VONOS scheme of Varonos and Bergeles [17]. This is a second=third-order accurate up-
wind di�erencing scheme that satis�es the convection boundedness criterion (CBC) proposed
by Gaskell and Lau [37]. For details of implementation and application of this advection
scheme in laminar free surface �ows, the reader is referred to Ferreira et al. [16]. The Pois-
son equation (29) is discretized using the usual �ve-point Laplacian operator and the resulting
symmetric positive de�nite linear system is solved by the conjugate-gradient method. In sum-
mary the �uid �ow equations (1)–(5) take the following discretized form:

• r-Momentum

ũk+1
i+1=2; j = uk

i+1=2; j + 	t

{
CONV(u)|i+1=2; j − (pei+1; j − pei; j)=	r

+
1

Re 	z
[((ui+1=2; j+1 − ui+1=2; j)=	z − (vi+1; j+1=2 − vi; j+1=2)=	r)

− ((ui+1=2; j − ui+1=2; j−1)=	z − (vi+1; j−1=2 − vi; j−1=2)=	r)]

+
2

Re r�i+1=2; j 	r2
(r�i+1; j�t i+1; j(ui+3=2; j − ui+1=2; j)− r�i; j�t i; j(ui+1=2; j − ui−1=2; j))

+
1

Re 	z
[�t i+1=2; j+1=2((ui+1=2; j+1 − ui+1=2; j)=	z + (vi+1; j+1=2 − vi; j+1=2)=	r)

− �t i+1=2; j−1=2((ui+1=2; j − ui+1=2; j−1)=	z + (vi+1; j−1=2 − vi; j−1=2)=	r)]

− 2�
Re r2�i+1=2; j

�t i+1=2; jui+1=2; j +
1

Fr2
gr

}k

(32)

where the superscript k denotes the time level, and

CONV(u)|ki+1=2; j=
[
1
r�

@(r�uu)
@r

+
@(uv)
@z

]∣∣∣∣
k

i+1=2; j
(33)
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• z-Momentum

ṽk+1
i; j+1=2 = vk

i; j+1=2 + 	t

{
CONV(v)|i; j+1=2 − (pei; j+1 − pei; j)=	z

− 1
Re 	rr�i; j+1=2

[r�i+1=2; j+1=2((ui+1=2; j+1 − ui+1=2; j)=	z − (vi+1; j+1=2 − vi; j+1=2)=	r)

− r�i−1=2; j+1=2((ui−1=2; j+1 − ui−1=2; j)=	z − (vi; j+1=2 − vi−1; j+1=2)=	r)]

+
2

Re 	z2
(�t i; j+1(vi; j+3=2 − vi; j+1=2)− �t i; j(vi; j+1=2 − vi; j−1=2))

+
1

Re 	rr�i; j+1=2
[r�i+1=2; j+1=2�t i+1=2; j+1=2((ui+1=2; j+1 − ui+1=2; j)=	z + (vi+1; j+1=2 − vi; j+1=2)=	r)

− r�i−1=2; j+1=2�t i−1=2; j+1=2((ui−1=2; j+1 − ui−1=2; j)=	z + (vi; j+1=2 − vi−1; j+1=2)=	r)]

+
1

Fr2
gz

}k

(34)

where

CONV(v)|ki; j+1=2 =
[
1
r�

@(r�vu)
@r

+
@(vv)
@z

]∣∣∣∣
k

i; j+1=2
(35)

• Poisson equation for  

1

r�i; j	r
2 (r

�
i+1=2; j( i+1; j −  i; j)− r�i−1=2; j( i; j −  i−1; j)) + ( i; j+1 − 2 i; j +  i; j−1)=	z2

=
1

r�i; j	r
(r�i+1=2; j ũi+1=2; j − r�i−1=2; j ũi−1=2; j) + (ṽi; j+1=2 − ṽi; j−=12)=	z (36)

• k-Equation

kk+1
i; j = k k

i; j + 	t


CONV(k)|i; j + 1

Re r�i; j	r2
[r�i+1=2; j(1 + (�t i+1; j + �t i; j)=2�k)(ki+1; j − ki; j)

− r�i−1=2; j(1 + (�t i; j + �t i−1; j)=2�k)(ki; j − ki−1; j)]

+
1

Re 	z2
[(1 + (�t i; j+1 + �t i; j)=2�k)(ki; j+1 − ki; j)

− (1 + (�t i; j + �t i; j−1)=2�k)(ki; j − ki; j−1)] + Pi; j − �i; j




k

(37)
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where

CONV(k)|ki; j=
[
1
r�

@(r�uk)
@r

+
@(vk)
@z

]∣∣∣∣
k

i; j
(38)

• �-Equation

�k+1i; j = �ki; j + 	t


CONV(�)|i; j + 1

Re r�i; j	r2
[r�i+1=2; j(1 + (�t i+1; j + �t i; j)=2��)(�i+1; j − �i; j)

− r�i−1=2; j(1 + (�t i; j + �t i−1; j)=2��)(�i; j − �i−1; j)]

+
1

Re 	z2
[(1 + (�t i; j+1 + �t i; j)=2��)(�i; j+1 − �i; j)

− (1 + (�t i; j + �t i; j−1)=2��)(�i; j − �i; j−1)] + (C1�Pi; j − C2��i; j)=Tt i; j + �Ei; j




k

(39)

where

CONV(�)|ki; j=
[
1
r�

@(r�u�)
@r

+
@(v�)
@z

]∣∣∣∣
k

i; j
(40)

The eddy viscosity, the production of turbulence, the gradient dissipation and the time scale
are discretized, respectively, as follows:

�k
t i; j=C�f�k k

i; jTt
k
i; j (41)

Pk
i; j = �tki; j


2

 1
	r2

(ui+1=2; j − ui−1=2; j)2 +
1
	z2

(vi; j+1=2 − vi; j−1=2)2 + �

(
ui+1=2; j + ui−1=2; j

2r�i; j

)2

+
[
1
4	z

(ui+1=2; j+1 + ui−1=2; j+1 − ui+1=2; j−1 − ui−1=2; j−1)

+
1
4	r

(vi+1; j+1=2 + vi+1; j−1=2 − vi−1; j+1=2 − vi−1; j−1=2)
]2


k

(42)

Ek
i; j =

2�kt i; j
Re

{
1
4	r4

(vi+1; j+1=2 + vi+1; j−1=2 − 2(vi; j+1=2 + vi; j−1=2) + vi−1; j+1=2 + ui−1; j−1=2)2

+
1
4	z4

(ui+1=2; j+1 + ui−1=2; j+1 − 2(ui+1=2; j + ui−1=2; j) + ui+1=2; j−1 + ui−1=2; j−1)2
}k

(43)
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Tk
ti; j=(1− �)Min

{
ki; j
�i; j

;
2
3C�

√
3

8(|S|2)i; j

}
+ �

{
ki; j
�i; j
+
(
1
�i; j

)1=2}k

(44)

Note that

|S|2 =D :D=
(
@u
@r

)2
+
(
@v
@z

)2
+
1
2

(
@u
@z
+

@v
@r

)2

and this quantity is discretised as

(|S|2)ki; j =
{
1

	r2
(ui+1=2; j − ui−1=2; j)

2 +
1

	z2
(vi; j+1=2 − vi; j−1=2)

2

+
1
2

[
1
4	z

(ui+1=2; j+1 + ui−1=2; j+1 − ui−1=2; j−1 − ui+1=2; j−1)

+
1
4	r

(vi+1; j+1=2 + vi+1; j−1=2 − vi−1; j−1=2 − vi−1; j+1=2)
]2}k

5.1. Discretization of the convective terms

From now on, a high-order upwinding scheme is used for the discretization of the convective
terms in the transport equations (1)–(5). For brevity, only the discretizations of the con-
vective terms (33) and (38) are summarized; all the other convective derivatives are treated
similarly (for more details, see Reference [30]). The non-linear derivatives in those terms are
approximated by

@(r�uu)
@r

∣∣∣∣
i+1=2; j

≈ [r�i+1; j( �ui+1; jui+1; j)− r�i; j( �ui; jui; j)]=	r (45)

@(uv)
@z

∣∣∣∣
i+1=2; j

≈ ( �vi+1=2; j+1=2ui+1=2; j+1=2 − �vi+1=2; j−1=2ui+1=2; j−1=2)=	z (46)

@(r�uk)
@r

∣∣∣∣
i; j
≈ [r�i+1=2; j( �ui+1=2; jki+1=2; j)− r�i−1=2; j( �ui−1=2; jki−1=2; j)]=	r (47)

@(vk)
@z

∣∣∣∣
i; j
≈ ( �vi; j+1=2ki; j+1=2 − �vi; j−1=2ki; j−1=2)=	z (48)

where �ui−1=2; j, �ui; j, �ui+1=2; j, �ui+1; j, �vi; j−1=2, �vi; j+1=2, �vi+1=2; j+1=2 and �vi+1; j−1=2 are the convec-
tive velocities (see Reference [11]). In Equations (45)–(48), the transported properties u
and k at grid points (i + 1; j), (i; j), (i + 1

2 ; j +
1
2), (i +

1
2 ; j − 1

2 ) and (i +
1
2 ; j), (i − 1

2 ; j),
(i; j + 1

2), (i; j − 1
2 ), respectively, are approximated by using the upwinding VONOS scheme.
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For example, the kinetic energy k at the point (i + 1
2 ; j) is approximated by

ki+1=2; j ≈ (1− S2)




ki; j; if k̂ i; j =∈ [0; 1]
10ki; j − 9ki−1; j ; if k̂ i; j ∈ [0; 3=74)
3
8 ki+1; j +

6
8 ki; j − 1

8ki−1; j ; if k̂ i; j ∈ [3=74; 1=2)
1:5ki; j − 0:5ki−1; j ; if k̂ i; j ∈ [1=2; 2=3)
ki+1; j ; if k̂ i; j ∈ [2=3; 1]




+S2




ki+1; j ; if k̂ i+1; j =∈ [0; 1]
10ki+1; j − 9ki+2; j ; if k̂ i+1; j ∈ [0; 3=74)
3
8 ki; j +

6
8 ki+1; j − 1

8 ki+2; j ; if k̂ i+1; j ∈ [3=74; 1=2)
1:5ki+1; j − 0:5ki+2; j ; if k̂ i+1; j ∈ [1=2; 2=3)
ki; j; if k̂ i+1; j ∈ [2=3; 1]




where the parameters S1 and S2 are given by

S1 =

{
0; if �ui+1=2; j+1=2¿0

1; otherwise
and S2 =

{
0; if �ui+1=2; j¿0

1; otherwise

and the constants k̂ i; j and k̂ i+1; j are de�ned as normalized variables (see Reference [38]).
There are of course a number of di�erent high order approaches that have been employed to

deal with the convective terms. Our reason for selecting VONOS was that it performed well
on a di�cult test problem (see Reference [16]) from among an (admittedly non-inclusive) set
of possible methods.
It is worth noting that, for physical reasons [39], a desirable property of a di�erence scheme

for k–� models is positivity. Developing a discretization of the k–� equations that ensures the
positivity of the computed quantities throughout the �ow domain and during the course of
the iterations is, in general, a di�cult task. The non-linear advection scheme employed in this
paper has built-in monotonicity, but the other non-linear terms could lead to the possibility of
overshoots and undershoots in k and �, and even arti�cial negative values. In order to avoid
unphysical transient solutions, we set any values of turbulence variables, that are less than
zero, to the upstream values.

6. CODE VALIDATION

In this section, we shall present �uid �ow problems which will be used to validate the
numerical method described in this paper.
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Figure 2. Sketch of the �ow �eld and computational domain: U0 = 1:0 m s−1 and H =1:0 m.

6.1. Turbulent boundary layer over a �at plate

A two dimensional zero-pressure-gradient turbulent boundary layer over a �at plate is �rst
used to validate the numerical technique. This �uid �ow problem has frequently appeared in
the literature, and several methods have been proposed to estimate the skin-friction coe�cient
Cf [40]. Figure 2 shows schematically the geometry of the �uid �ow problem in Cartesian
co-ordinates and the parameters used in the present simulation.
The Reynolds number, based on the in�ow velocity U0 and the channel height H , is

Re=2:0× 106. Computations are performed on three di�erent meshes, namely: the coarse
mesh (20× 100 computational cells, 	x= 	y=0:05 m); the medium mesh (40× 200 compu-
tational cells, 	x= 	y=0:025m) and the �ne mesh (80× 400 computational cells, 	x= 	y=
0:0125 m). In these simulations, four marker particles per in�ow cell were used. In what
follows, we present three well-known analytical estimates of the skin-friction coe�cient
and a numerical estimate obtained by the GENSMAC code equiped with the H Re k–�
model.
Figure 3 compares the dimensionless turbulent skin-friction coe�cient Cf = 2�w as calcu-

lated by GENSMAC using the H Re k–� model with the estimates given by Prandtl, power-
law and White (see, for example, Reference [34]). The �gures display Cf against the lo-
cal Reynolds number Rex=U0x=�0 at the (non-dimensional) time t=6:477 on three di�erent
sized meshes. Additionally, the corresponding laminar result is also included. As shown in
Figures 3(a)–(c), the numerical estimates are generally satisfactory for Rex beyond 1:0× 106.
It can also be observed from Figure 3(d) that when the coarse mesh is twice re�ned, there
appeared to be convergence of the numerical solution to a pro�le near the power-law and
the White pro�les. On the other hand, for Rex61:0× 106, a systematic discrepancy existed
and this may be due to the uniform meshes used and=or the initial velocity pro�le not being
su�ciently turbulent at the entrance region.
In order to investigate the performance of the numerical method in regions where the

turbulent stress is predominant, we �x the non-dimensional location x=3:75 at the plate
and extract the velocity pro�le u+ = u+(ln y+) at this point using the numerical solution
in the medium sized mesh. This pro�le was then compared with experimental data from
Wieghardt and Tillmann [41] and two pro�les derived by varying the constants K and B in
the law (25). One of these pro�les, proposed by Nikuradse and Prandtl (see, for instance,
Reference [34]) assumes the values K =0:40 and B=5:50, and the other, estimated by Coles
and Hirst [42], uses the values K =0:41 and B=5:00. Figure 4 presents a comparison of
these two pro�les and some experimental data with the computed pro�le. The results display
a degree of compatibility suggesting that the e�ective stress tensor estimated at the wall
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Figure 3. Comparison between the skin-friction coe�cient pro�les Cf =Cf (Rex) for the turbulent bound-
ary layer on a �at plate calculated using the H Re k–� model and theoretical estimates: (a) comparison
in the coarse mesh; (b) comparison in the medium mesh; (c) comparison in the �ne mesh and (d)

comparison of the three numerical solutions.

is providing the correct condition for the solution in the region with z+¿500. Thus, the
numerical solution of the H Re k–� model is a reasonable simulation of turbulence in regions
remote from the rigid boundary.
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Figure 4. A comparison between the numerical solution of the velocity in the turbulent bound-
ary layer and (a) pro�le given by Coles and Hirst; (b) pro�le given by Nikuradse and (c)

experimental data given by Wieghardt and Tillmann.

Figure 5. Schematic of the physical problem, showing the geometry and
parameters: U0 = 1:0 m s−1 and D=0:010 m.

6.2. Turbulent planar jet impinging on a �at surface

The H Re k–� and LRe k–� models will now be employed to solve a planar jet impinging
onto a �at surface. The geometry and parameters are schematically represented in Figure 5.
For this free surface �uid �ow problem, the Reynolds number based on the in�ow velocity
U0 and in�ow diameter D is Re=1:6× 104, and the Froude number is Fr=U0=

√
gD=3:193.

Three di�erent meshes will be used, namely: the coarse mesh (25× 50 computational cells,
	x= 	y=0:002m); the medium mesh (50× 200 computational cells, 	x= 	y=0:001m); and
the �ne mesh (100× 400 computational cells, 	x= 	y=0:0005 m). In these computations,
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Figure 6. Comparison between the free surface height obtained by two dimensional H Re k–� (left
column) and LRe k–� (right column) models and approximate analytical solutions by Watson.

three marker particles per in�ow cell were used. In the following, a quantitative comparison
will be performed in order to compare Watson’s two-dimensional analytical predictions for
turbulent �ow [43] with the numerical results. Figure 6 plots the non-dimensional free surface
height h=0:5D against the non-dimensional distance (x=0:5D)Re−1=4. The numerical results
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Figure 6. Continued.

were obtained by solving the H Re k–� model (Figures 6(a), (c) and (e)—left column) and
LRe k–� model (Figures 6(b), (d) and (f)—right column) for three di�erent sized meshes.
The computations were given at the non-dimensional time t=38:0 and a comparison with
the inviscid and viscous solutions of Watson [43] was e�ected. Additionally, we have also
included Watson’s boundary layer thickness. It can be seen, from Figure 6 (left column)
and Figure 7(a), that the calculations using the H Re k–� model on �ne mesh (200× 400
grid points) provide practically the same results as those obtained on the coarse and medium
meshes, indicating grid independence of the numerical results. One can note also that the
numerical results on the coarse and medium meshes monotonically converge to the numerical
solution on the �ne mesh, and that the numerical solution on the �ne mesh is in good
agreement with the Watson’s viscous solution.
A comparison between the free surface height obtained from the LRe k–� model and the

Watson’s viscous solution was also made, and the results are displayed in the Figure 6 (right
column) and Figure 7(b). These were computed at the same non-dimensional time, as for
the H Re k–� model. It is obvious that the numerical results with this turbulence model on
the three meshes are unsatisfactory. We believe that for this speci�c �uid �ow problem the
disagreement between the viscous analytical solution, developed by Watson, and the numerical
solution, obtained by using the LRe k − � model, may be attributed to the fact that the
numerical solution has been calculated on a uniform mesh resulting in a poor resolution of
the viscous sublayer. In fact, for �ow dynamics at this Reynolds number the thickness of the
viscous sublayer of the turbulent boundary layer is so thin (O(�=u�)) that it would be di�cult
to resolve it in any reasonable time.
The performance of the numerical methods in the calculation of the mean velocity and eddy

viscosity was also assessed, and comparisons, using the �ne mesh between the non-dimensional
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Figure 7. Comparison between the three numerical solutions:
(a) H Re k–� model and (b) LRe k–� model.

numerical solution obtained from the H Re k–� model and non-dimensional analytic solutions
derived by Watson are presented in Figure 8. The �rst two plots, parts (a) and (b), of this
�gure represent, respectively, the x-component of the mean velocity, u and the eddy viscosity,
�t , along the horizontal station y=D=0:00025. The next plot, part (c), compares numerical
and analytical pro�les for u along the vertical station x=D=19:675. Part (d) of the �gure
shows the numerical and analytical pro�les for u along the free surface. It is seen from this
�gure that the agreement between the computed results with H Re k−� model and analytical
results can be said to be satisfactory. With the LRe k–� model, once more, the agreement is
much less satisfactory (not shown). It should also be observed that the success in capturing
mean velocity and turbulent quantities depends rather crucially on the grid resolution and the
turbulence modelling.

6.3. Turbulent axisymmetric jet impinging on a �at surface

In this subsection, both the H Re k–� and LRe k–� models will be studied for an axisym-
metric jet impinging onto a �at surface. Figure 9 shows the geometry of the problem and the
parameters used in the present computation.
For this problem, the Reynolds number based on the in�ow velocity U0 and in�ow diam-

eter D is Re=(
=2)U0D=�=5:03× 104, and the Froude number is Fr=U0=
√
gD=2:26. For

this free surface �ow, three di�erent meshes were also used and will be referred to as the
coarse mesh (50× 100 computational cells, 	r= 	z=0:001 m), the medium mesh (100× 200
computational cells, 	r= 	z=0:0005 m), and the �ne mesh (200× 400 computational cells,
	r= 	z=0:00025m). In these computations, three marker particles per in�ow cell were used.
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Figure 8. Comparison between numerical and analytical results: (a) and (b) mean velocity and
eddy-viscosity pro�les at station y=D=0:00025; (c) mean velocity pro�les at station x=D=19:675 and

(d) mean velocity pro�les at the free surface.

A quantitative comparison between Watson’s axisymmetric analytical predictions [43] and
the numerical results will now be performed. Figure 10 displays a comparison between
the variation of the non-dimensional free surface height (h=0:5D)Re1=9 with non-dimensional
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Figure 9. Con�guration of the �ow �eld, showing geometry and
parameters: U0 = 2:0 m s−1 and D=0:10 m.

distance (r=0:5D)Re−1=9. The numerical results were obtained by solving the H Re k–� model
(Figures 10(a), (c) and (e)—left column) and LRe k–� model (Figures 10(b), (d) and (f)
—right column) on the three meshes. The computations were given at the non-dimensional
time t=20:48, along with the approximate viscous and inviscid axisymmetric solutions of
Watson [43]. It can be seen, from the left column of this set of �gures, that the numerical
solutions using the H Re k–� model on coarse and medium meshes monotonically converge
to the numerical solution on the �ne mesh and the numerical solution on the �ne mesh shows
reasonable agreement with Watson’s turbulent viscous solution. A comparison between the
surface height obtained from the LRe k–� model and Watson’s viscous solution was also
made at the same non-dimensional time, and the results are displayed in the right hand col-
umn of the Figure 10. It is clear that the numerical results with this turbulence model on the
coarse and medium meshes were unsatisfactory, whereas the �ne mesh provides a solution
near Watson’s viscous solution.
As in the previous calculations, a possible explanation for the discrepancy between

the viscous analytical solution developed by Watson and the numerical solution obtained
by the LRe k–� model might be attributed to the poor resolution of the viscous sublayer. On
the other hand, the discrepancy between the viscous solution of Watson and the H Re k–�
model may be due to the assumptions Watson had to make in order to obtain his analyti-
cal solutions. Indeed, Watson himself points out a discrepancy between his turbulent viscous
solution and experimental data.

7. APPLICATIONS

We conclude this paper by presenting numerical simulations of free surface turbulent �ows
using the H Re k–� model. The problems consist of a horizontal jet penetrating a quiescent
�uid from an entry port at various depths, denoted by H , beneath the free surface. The
geometrical con�guration, as well as the parameters employed, for this free surface �uid �ow
is shown in Figure 11. In this computation, the associated Reynolds and Froude numbers are
Re=DU0=�=5:0× 104 and Fr=U0=

√
gD ≈ 1:8, respectively. Also, for all runs, the number

of marker particles per in�ow and full cells is three.
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Figure 10. Comparison between the free surface height obtained by the axisymmetric H Re k–� (left
column) and LRe k–� (right column) models and approximate analytical solutions of Watson.

The numerical simulations of the free surface �uid �ow problem described above are per-
formed for three cases, namely: H =6:0, 1.0 and 0:5m. The development of non-dimensional
vorticity distributions, together with the free surface elevation at various non-dimensional
times are presented in Plates 1 through 3.
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Figure 10. Continued

Figure 11. Geometry and parameters for the free surface �uid �ow of a penetrating
planar jet in a pool: U0 = 2:0 m s−1 and D=0:25 m.

Plate 1 depicts the case H =6:0 m, which corresponds to the entry port far from the free
surface. In this case, the interaction with the free surface occurs only at the later stages of
the �ow development. Initially, one can observe the growth of the instability of the boundary
layers between the entering jet and the stagnant �uid and, subsequently, the formation of a pair
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of counter-rotating eddies. Later on, at non-dimensional time t=67:2, the �rst pair of eddies
propagates towards the free surface. As these eddies reach the free surface, at non-dimensional
time t=105:6, they start to move parallel to it, one to the left and one to the right. At this
time it is also possible to notice the characteristic signature of an upwelling vortex pair, which
is given by an elevated central part, corresponding to the region between the vortices; two
depressions can be observed on the far side of each vortex. From the interaction of these
two eddies two smaller eddies begin to form in the region of the depressions creating two
new pairs of eddies. At non-dimensional time t=121:6, the new eddies are strong enough
to induce a downward velocity and to cause the eddies to separate from the surface. In the
meanwhile, in the region close to the jet entrance, other vortical structures undergo pairing
interactions producing larger vortical structures as the jet penetrates the pool.
In the second simulation (Plate 2, with H =1:0 m) the jet emerges quite close to the

surface, and the �ow begins to interact with the free surface at an early stage. Some �uid is
entrained by the jet from the surface. The start-up vortex pair propagates both outwards and
towards the bottom of the pool, describing a large circular arc. Meanwhile, other vortex pairs
are generated close to the injection position. As its size increases, the upper vortex interacts
with the free surface causing an upwelling at the free surface. The upwelling increases as
the vortex is pushed upward by other smaller vortex of opposite rotation. At later stages,
the magnitude of the non-dimensional vorticity is reduced, we believe, by a build up of the
turbulent eddy viscosity.
The third case (H =0:5 m), shown in Plate 3, corresponds to a shallow jet that has a

strong interaction with the free surface. From the beginning, the vortices interact with the
free surface causing the formation of undulations on the free surface. As time progresses, the
undulations become more intense until, at later times, the strengths of the vorticities decrease
dramatically away from the injection point causing a reduction in the surface roughness. In
Figure 12 more information is provided about the non-dimensional distributions of calcu-
lated mean velocities and mean values of turbulence quantities at the non-dimensional time
t=52, in addition to the �uid �ow structure at the free surface at the non-dimensional time
t=33:6.
These simulations produce results that are consistent with previous simulations and=or ex-

periments [44], and we believe may be regarded as quite realistic. Similar vortical structures
have been reported for jets issued in con�ned domains without free surfaces, both for laminar
and turbulent �ows. In particular, Hirsa and Willmarth [45] and Sarpkaya and Suthon [46]
report on the formation of slight surface deformations, called scars. These deformations are
caused by vortices of opposite rotation and the respective secondary vortices generated by
their interaction with the free surface.
The �ow obtained in these simulations is an unsteady �ow with some small scale structures,

particularly in the last case (see Plate 3 and Figure 12), in which the e�ect of the free
surface is larger. Large eddy simulations of turbulence are simulations in which the energy-
containing scales are resolved down to the inertial range which really requires unsteady three-
dimensional simulations [47]. The smallest resolved scales in the current simulations are a
great deal larger than the turbulent scales (which in any case are associated with the three-
dimensional motion) and so it would be inappropriate to consider these simulations as LES
approximations. The results of this paper (in particular Figure 12 and Plates 1–3) should be
interpreted as representing the two-dimensional motion of one realisation occurring at scales
greater than the discretization scale. In other words, both the free surface position and the
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Figure 12. Jet in a pool at non-dimensional time t=52 (case H =0:5 m) showing: (a) �lled surface,
and (b) �ow surface at non-dimensional time t=33:6; (c) mean velocity contours, (d) kinetic energy

contours, (e) turbulence dissipation rate contours and (f) eddy viscosity contours.
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velocity �elds computed here may be regarded as the deterministic motion at these larger
scales. Indeed, these simulations may be thought as time-dependent Reynolds averaged Navier–
Stokes (T-RANS) or as very large eddy simulations (VLES) [48], as opposed to the three-
dimensional, and much more expensive, LES.
Turbulent �ow simulations using LES and DNS approaches have been performed by other

authors, but are mostly restricted to very low (or negligible) Froude numbers (see Refer-
ences [49, 50]). The ability to perform simulations for high values of the Froude number is a
distinct advantage of the present numerical method.

8. CONCLUSION

This paper has been concerned with adapting the classical front-tracking Marker-and-Cell
(MAC) approach to a two-dimensional (and axisymmetric) variant of the k–� turbulence
model. This adaptation was not straightforward and really depended upon building recent work
of the authors and, in particular, the GENSMAC code—a modernised version of the MAC
approach. In order to achieve an accurate discretisation of the non-linear terms, a second=third-
order upwinding technique was required. The closure of the time-averaged Navier–Stokes
equations was achieved by using the two-equation eddy-viscosity model: the high Reynolds
k–� model with a time scale proposed by Durbin [19]; and low-Reynolds number form of the
k–� model following Yang and Shih [14].
The code was validated by considering three problems: turbulent boundary layer �ow over

a �at plate; turbulent planar jet impinging on a �at surface and turbulent axisymmetric jet
impinging on a �at surface. The �rst problem has appeared frequently in the literature and
we calculated both the skin friction and the velocity pro�le, which were then shown to
compare favourably with existing experimental data. For the turbulent jet problems results
were compared with the approximate analytic results of Watson [43]. For the H Re k–� model
the results compared favourably; for LRe k–� model the results were less favourably, but this
may be due to the fact that there are discrepancies between Watson’s analytic solutions and
existing experimental data.
Finally the H Re k–� model was employed to solve the problem of a horizontal jet penetrat-

ing a quiescent �uid from an entry port at various depths beneath the free surface. The time
evolution of the vorticity contours were displayed for entry points at di�erent heights showing
the interaction with the free surface. In addition, the undulations at the free surface, the mean
velocity contours, the kinetic energy contours, the turbulence dissipation rate contours and
the eddy viscosity contours were all displayed; physical explanations were provided, and the
work was placed in context with the existing literature.
In general it may be concluded that the simulations of the H Re k–� model were good, but

those for the LRe k–� model were less satisfactory. One advantage of the methodology of
this paper is its ability to handle high Froude numbers. Computationaly, it may be speeded
up (by up to a factor of 3) by using wall functions.
We believe that these results could be improved by incorporating more physics into the

model. With this in mind the authors are considering adaptations fo the renormalization group
method (RNG) and the realizable k–� model.
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Plate 1. Non-dimensional time evolution of the non-dimensional vorticity contours of a two-dimensional
numerical simulation, using the H Re k–� model. H =6:0 m.
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Plate 2. Non-dimensional time evolution of the non-dimensional vorticity contours of a two-dimensional
numerical simulation, using the H Re k–� model. H =1:0 m.
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Plate 3. Non-dimensional time evolution of the non-dimensional vorticity contours of a two-dimensional
numerical simulation, using the H Re k–� model. H =0:5 m.
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